
AD-A73 031 LEARNING IN -A -PROBABLST IC ENVIRONM E NT A NEW APPROACH /
AND SOME PRELIMINANYF NDINGS(U ICHI CAGO UNI A CENTER
F OR DECISIONRSEARCH KLAYMAN MAY 83 NR-

J UN 48 E34



111LW L 2L 83

IIII1 .25 1.4 1.6

MICROCOPY RESOLUTION TEST CHART
NATIIONAL HU IL, ( =4NPAR,.



I1I~IPI ~\



i i

Learning in a Probabilistic Uwiramst:
A amn Approacb, and Sam

Preliminary findings*

Joshua Klayman
University of Chicago

Graduate School of Business
Center for Decision Research

poneored br:
Office of Naval Research

Contract Number, N00014-81-K-0314
Work Unit Number, NR 197-071

*This work was supported by research funds from the University of Chicago,
Graduate School of Business, and through the Office of Naval Research contract
to Hillel tinhorn and Robin Hogarth. Thanks to Hillel Zinhorn, Jay Russo and
the other members of the Center for Decision Research for many comments and
contributions.

Paper presented at the meeting of the Midwestern Psychological
Association, Chicago, May 1983.

Approved for public release disi-ribution unlimited. Reproduction in
whole or in part is permitted for any purpose of the United States Governent.

- *



Unclassified
'ECUAITV CL.A80PICATION OF T1I4S PAGE (Mb" Dae SO9.

REPORT DOCUMENTATION PAGE ____ D __M______ORM

I. REPORT NUMBER I2 GOVT ACCESSION mECIPIENt'S CATALOG NUmEgm
7

4. TITLE (ad bANtle) 1. TVPg OP REPORT a PERIOD COVIREO

Learning in a Probabilistic Environment: A
New Approach, and Some Preliminary Findings. Technical Reort

41. PERFORMING On. REPORT NUMER

. AUTHORS I. CONTRACT ON GRANT NUMEWO)

Joshua Klayman N00014-81-K-0314

S. PERPORMING ORGANIZATION NAMC AND A0DRESS 'a. PROGRAM TA.MENT. PROJET. TAS
Center for Decision Research, Graduate School of AREA WORK UMIT NUMUERS'
Business, University of Chicago, 1101 East 58th NR 197-071
Street, Chicago, Illinois 60637

I. CONTROLLING OFPICE NE AND AOORESS IS. REPORT OATE
Office of Naval Research May 1983
800 North Quincy Street IS. NUNGER OP PAGES
Arlington, Virginia 22217 29

14. MONITORING AGENCY NAME A AOORESIWIt diffIwt ft CEiNOrnlU0 0ee) I&5 SECURITY CLAIS. (of W ls)

Unclassified

Ik &fgkUIFI C € ATIO DOWNGRADOING

10. OmSTRIIUTIOo STATEMENT (of VW& At*w#)

Approved for public release; distribution unlimited.

17. DISTRIUTION STATEMENT (.E 8M e iiEd lb 5 30. ii dleflo hem 5m

I& SUPPLEENITARY NOTES

1S. KEY wORO (OCmilam -- m a& it amemr -d WNW I Shah ambu)

Learning, prediction, feedback, experience, probability-learning,
and development of expertise.

iTMTRACT (Caohew m mwee aih It ami - I W' Ip UmbMW)

Many studies of #probability learning) have led to the conclusion that

human learners cannot find the *rules amidst the noise e (Brehmer, 1980).
HiXWger, 1i is hypothesized that under more natural conditions, learners do

develop rules which are probabilistically predictive, and improve chiefly

through the addition of new predictive variables. The present study - A L

001 AN7 143 am-o or I .Nov oii is sWL.
S~ 7 ITS/IN 01O.NV S1401 Unclassified

SCURITY CLAMPIGATiON OP THIS PAGE (*An Dae l00u0

II

- - ,*'II- - I



Unclassified
tie 94"m CLAMPIOAOW OFTHMW PAS IM3 04" 2"

20.

represents natural learning situations by including: (9< instructions and
rewards that emphasize gradual development of understanding, rather than

discovery of "the right rule;" and _ a large number of cues, which must

be discovered, rather than a few cues explicitly given. Results with 12

colleqe-student subjects indicate significant learning in a computer-displayed

task, over approximately 10 hours of experience. Learning was incremental,

and was accompanied by the addition of valid factors to existing rules. These

results contrast with findings that people fail to utilize information effec-

tively in probabilistic situations. Earlier studies do not, however, model

situations in which learning requires the discovery and validation of predic-

tive cues, processes critical for the development of real-world expertise.

Unclaesified
NTY CL~ASPtCAg OF ThU PAGWWI6 DOD SOWS*

'Who" .t



Learningi..a.probabi.i.t.ic77.ronmen

Learning in a probabilistic environment

Learning in a Probabilistic Environment: A New

Approach, and Some Preliminary Findings

Planning next year's budget, deciding when to plant your corn, selecting

a class of graduate students, . . . What these activities have in common is

that they all require us to predict the behavior of complex, multifactor,

probabilistic environments. Indeed, we face this task whenever we mst deal

with the economy, the weather, or almost any aspect of human behavior. Even

the behavior of purely mechanical systems is effectively probabilistic to

those of us with imperfect knowledge (consider the vagaries of the family

car).

The research discussed here is concerned with the question of how people

come to understand such systems. Specifically, how do people learn the

relationships between factors in the environment when those relationships are

"imperfect," that is, correlational rather than strictly lawful? Given that

we must operate in a probabilistic world, this learning process is essential

for the development of real-world expertise.

There is, of course, already a long history of research on this general

topic, under the rubric of "probability learning" (see reviews by Brehmer,

1980; Hammond, Stewart, Brehmer, & Steinman, 1975; Slovic & Lichtenstein,

1971). There have been many variations in 30 years of this research, but

there has been a common basic paradigm. The subject's task is to predict a

criterion value (e.g., length of a line) based on some predictive variables

("cues"). Most often, the cue variables are given arbitrary labels (e.g.,

A, A , and the subject receives numerical information on each cue (e.g.,

"A - 4, . - 6, C - 1). After receiving this information, the subject makes a

prediction, and subsequently is shown the true outcome (e.g., the line

2. .- - L----



Learning in a probabilistic environment 2

associated with [4, 6, 1]). The true outcome is a lawful tunction of A, B,

and C, plus some amount of random error. For example, several studies have

used the rule

Y - .8sin xI + .4sin 2 + .2sin x3 + c

where Y is the criterion, and e is a random number, accounting for

anywhere from 12% to 751 of the variance in the criterion (Dean, Hammond, &

Summers, 1972; Hammond, 1971; Hammond, Summers, & Dean, 1973; Hoffman, Earle,

& Slovic, 1981).

Investigators using this paradigm are looking at people's ability to

learn the relationships between cues and criterion in the presence 3f

imperfect (i.e., probabilistic) feedback. To summarize 30 years of research

very succinctly, people seen to be absolutely terrible at doing this.

Consider, for example, the study by Hoffman, et al., using the three-cue

function described above, with 12% random variation. Using the optimal

combination of factors, subjects could in theory achieve a correlation of .94

between their predictions and the true outcomes. After 200 "stimulus-

response-outcome" feedback trials, however, the average subject had achieved a

correlation of .21.

In his recent review of probability-learning studies (including many of

his own) Bernot Brehmer concludes:

People do not learn optimal strategies from experience even if
the they are given massive amounts of practice. . . . This is
due to lack of adequate schemata for handling the probabilistic
aspect of the world. (1980, pp. 233-35)

Subjects seen to be unable to separate "signal" from "noise;" they reject

correct hypotheses about relationships, and frequently revive rejected

hypotheses. They do seem able to apply Information given them, e.g., if the

experimenter inform the subject of the relevant cue-criterion functions
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(e.g., Deane, Hammond, & Summers, 1972; Hoffman, et al., 1981). However, they

seem resistant to any attempts to help them find the relationships, through

instruction or through structuring of feedback information (Brehmer &

Kuylenstierna, 1978, 1980; Hoffman et al., 1981).

Findings like these do not bode well for people's ability to develop any

new understanding of their environments. They are also troubling, though,

because they seem to contradict common everyday experiences of learning.

Imagine, for example, that you ask about a colleague's whereabouts, and are

told, "Re usually stays home on Fridays, especially if the weather's nice,

although toward the end of the term he's more likely to be around." A

statement like this is not extraordinary, yet it expresses a three-factor

probabilistic prediction rule. How can this be? One possibility is that we

only think we have learned such rules, but they are not, in fact, valid (c.f.

Einhorn & Hogarth, 1978 on "persistence of the illusion of validity").

However, it is also possible that the usual probability-learning task misses

something important about human learning processes--something that does permit

effective learning in natural probabilistic environments.

To explore this latter hypothesis, consider several important ways in

which the laboratory learning task may differ from "real-world" learning

tasks:

1. Linearity of cues. Most probability-learning tasks include cues

which have a non-linear, or even non-monotic, relationship to the criterion

(e.g., the three-cue function desecribed earlier). These relationships are

particularly difficult to learn (erehmer, 1980; Hammond & Summers, 1965), but

it may be easy to avoid these difficulties in natural settings. A number of

studies have demonstrated that complex systems can generally be well modeled

with strictly linear rules. Even when the relative weights are "improper," or

--. • -
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the true rule contains nonlinearities, linear models can often account for a

high proportion of the variance (Dawes and Corrigan, 1974; Einhorn and

NcCoach, 1977; Yntema and Torgeson, 1961). This is especially so if there are

many, partially redundant cues in the system. Indeed, the one bright spot in

the probability-learning literature is that people seem to be fairly good at

learning linear rules, even in the presence of noise (e.g., Brehmer &

Kuylenstierna, 1978, 1980; Dean et al., 1972; Naylor & Domine, 1981). Brehmer

and Kuylenstierna (1978), for example, used a task with two cues each having a

positive linear relationship to the criterion. The maxium attainable

correlation was .80, and subjects achieved a correlation above .70 after 60

trials. Thus, even if humans thought only in tern of linear relationships,

this would still permit a good deal of predictive ability in many situations.

2. Number and explictness of cues. The typical laboratory task involves

only a very small number of cues (usually I to 3), and these are explicitly

identified. In natural situations, though, there are often many possible

cues, and almost always an opportunity to discover and incorporate new

information. Building a model of an environment, then, involves two basic

processes: finding the cues, and figuring out how to aggregate them.

Probability-learning tasks eliminate the cue-finding process. Research

suggests that the aggregation process is especially difficult (e.g., Dawes,

1971; Goldberg, 1970), and that finding the cues may be such more important.

Leaving out a variable is more serious than misweighting it; thus Dawes'

prescription that to build a good (if not "optimal") model, "the whole trick

is to know what variables to look at and then know how to add" (Dawes &

Corrigan, 1974, p. 105; see also Dawes, 1979; Einhorn & Hogarth, 1975).

3. Instructions and rewards. In the usual laboratory task, the gist of

the instructions is to "find the right rule" or "best rule." There is, then,

4i



Learning in a probabilistic environment 5

an implied dichotomy between "right" and "wrong" rules. This is reinforced by

a reward system in which the principal payoff for the subject is the discovery

of "the rule." Furthermore, in many tasks, until the rule is found, little

achievement is possible. Thus, there is little reason to retain hypotheses

which seen less than perfect, and little opportunity to build upon partial

knowledge. In contrast, in natural situations, predictive models are typic-

ally better or worse overall, in a more or less continuous way. Improvements

in understanding are more likely to be gradual or incremental, and reward

tends to vary continuously with predictive accuracy.

4. Time. In these tasks, the time allotted for learning has been

extensive by laboratory standards (several hours), but very short in

comparison with the time-span of experience usually associated with the

development of real-world expertise.

The goal of the research presented here was to look at learning processes

in a more natural environment, according to the four points described above.

That is, the task tested here: (a) can be understood in terms of linear cue-

criterion relationships; (b) provides many possible cues, not all of which are

explicitly specified; (c) includes instructions which emphasize improvement,

rather than ultimate solution, and payoffs that vary continuously with

predictive accuracy; and (d) allows subjects adequate amounts of time for

learning.

It is hypnthesized that in an environment like this, significant learning

will take place. Gradual improvement is expected, as learners discover and

test new valid predictive cues, and add these to their rule. As the learner's

rule becomes more complete, better prediction is possible. This process of

addition of valid factors is hypothesized to be the major means by which

predictive accuracy is improved. However, several other processes may also

_ _ _ _ _ _ :
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contribute: Invalid factors mistakenly included in the model may be expunged;

weak cues may be replaced with related cues that are more directly predictive;

and a more precise understanding of the shape and magnitude of the cue-

criterion relationships may be achieved. Note that only the last of these

processes is tapped in the typical probability-learning task.

Methods

Subjects interact with a computer display by means of a keyboard. The

screen displays geometric figures varying in size, shape, line-pattern (e.g.,

striped, checkered, etc.), and location. Around each figure is marked a

circular "area of influence," visible to the subject. In this environment of

figures, the path of a point is "traced" from a visible starting location, in

a straight line in any direction (see Figure 1). Subjects are told that "were

it not for the figures, the point would continue off the screen in a straight

line," but that "if a trace touches the area of influence around the figure,

the figure may affect the trace by causing it to stop somewhere on the screen,

as shown by a little asterisk." It is then explained that

The object of the game is to predict where the trace will
stop, or if it will go off the screen. You should understand
that this will be difficult, and you are not expected to be
able to "solve" it exactly. Rather, you should try and figure
out as much as you can about how it works, so you can make the
best predictions you can.

Twelve college-student subjects participated in this study. Each subject

received two types of experience with the system: learning and testing.

Learning sessions were 30-minute periods in which subjects could freely design

their own screens and conduct their own tests. They could draw figures of any

of three sizes, three shapes, and three patterns, and place them anywhere on

the screen. They could trace points starting anywhere, and going in any

-Ii
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direction. They were free to experiment, observe, calculate, and take notes

for as such of the 30-mlnute period as they liked. Then, they went on to a

testing phase. Here, they observed a set of 16 screens representing a random

sampling of situations in which a point passes close enough to a figure to be

(possibly) affected. In each test trial they were shown what event would be

tried, and they made a prediction as to the outcome, indicating whether they

believed the point would stop, and if so, where. After their prediction, the

true outcome was observed. The testing sessions were only about one-third the

length of the learning sessions and new trials proceeded quickly. Thus, most

learning took place in lerning sessions, despite feedback during tests.

Learning and testing sessions were alternated, with two of each on each

of seven days (about 10 hours of experience with the system). During this

time, the subjects were paid according to the number of points they achieved

in the testing session. Points were awarded according to the closeness of

their predictions to the true observed stopping point of each test trace.

The true rule underlying the behavior of the system was a linear

combination of six cues: Shape of figure; closeness of approach of trace to

figure; direction of treace toward right or left; size of figure; distance

from trace origin to figure; closeness of figure to center of screen. These

cues were weighted such that each of the first three accounted for roughly

twice as auch variance as each of the last three. Note also that only two of

these cues were directly specified in the display (size and shape of

figure). The other four had to be discovered among the plethora of possible

spatial relationships existing in the environment. Note also that one very

salient cue, the line-pattern of the figure, was a false cue in this case.

The subjects were divided randomly into two conditions, six in each. In

the protocol condition, subjects were asked to "think out loud" during the

S -- . -. --



Learning in a probabilistic environment 8

procedure, and were also questioned about their thinking at various points.

Those in the non-protocol condition were not asked for any verbal responses,

although an experimenter was present to help operate the computer, and to

handle any problems.

Results

Based on the model of learning proposed earlier, the main expectation was

that learning would take place gradually. Learning should be incremental, as

subjects discover and test new valid predictive cues, and add these to their

predictive models.

Figure 2 shows that gradual improvement was indeed observed, at least

through the sixth session. The results were analyzed using an ANOVA with one

between-subjects factor (condition: protocol/no-protocol) and two within

(session: one to seven; half: first test of the day/second test). The im-

provement with sessions was highly significant (F[6, 601 - 8.78, p < .1001),

and no other effects were significant.

There are also some data about the processes through which leirning was

accomplished. One of the responses required of the six verbal-protocol

subjects was to provide written "hints" after each day's experience. Their

instructions were to provide as many clues about the system as they could, as

though to a naive participant whom they wanted to help master the game.

Subjects were encouraged to include any information they though r-kght help,

even if they were not yet sure.

The hints were categorized according to the nature of the predictive cues

they utilized. Correct cues were those which corresponded to one of the six

valid cues in the model. Partly correct cues were those which captured some,

but not all, of a correct cue-criterion relationship (e.g., a cue which was

S (
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positively correlated with a correct cue). Incorrect cues were cues which had

little or no predictive value in the environment. The most coon example was

a belief that figure-pattern mattered. Also, any postulated interactions

between cues were scored as incorrect.

Figure 3 shows the changes in these categories of cues across the seven

days of experience. It was hypothesized earlier that the principle mechanism

of change would be the addition of new, valid cues to the model, and this is

supported by the data from the helpful-hints reports. The number of partly-

correct cues seems to remain constant, but this is the net result of two

processes. New partially-valid cues are being discovered throughout the

process, but partially-valid cues are also being replaced with stronger,

correct cues. Finally, it is interesting that the role of incorrect cues is

relatively small here. This is so despite the fact that cues were scored as

remaining in the subject's model until explicitly discounted or until an

incompatible new hypothesis was expressed. In some cases, incorrect cues

persisted in subject's models, but in many cases there were a series of

different incorrect cues (e.g., interactions) with only brief tenures.

The helpful-hints results are not definitive, of course, but they do

proovide support for the hypothesis that addition of cues is a primary source

of learning, with replacement of weak cues and removal of invalid cues as

secondary processes. In their comments, subjects very seldom expressed any

quantitative relationships. Expressions of rules were almost always ordinal,

e.g., "the bigger it is, the sooner it stops." It was rare even for subjects

to say anything about the relative importance of different cues. Thus, there

is little evidence of attention to cue weights, or to the shape of the cue-

criterion function.

1i
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Conclusions

This study is clearly just a beginning, but it demonstrates the need for

new consideration of processes of learning in probabilistic environments. The

focus should be on adding, revising, and eliminating cu' rather than on

pinpointing the cue-criterion function. There are a great variety of

interesting question for further research along these lines. For example:

(a) Is it important that subjects be allowed to experiment, rather than

just observe? Hoffman et al. (1981)found that this made no difference in a

typical probability-learning task, but it might be important in discovering

and validating new cues.

(b) This particular task was not deterministically predictable from the

subject's point of view. There were always unknown controlling factors, but

there was no explicitly random element. There are many important issues

concerning what "random* means (see, e.g., Lopes, 1982). Suffice it to say

here that the present experiment does not contain any factors which vary

unpredictably with time. This may or may not prove to be important in the

ability to learn from experience. Perhaps for learners not all unpredict-

ability is equal.

(c) What would lappen with additional learning time? Most of the sub-

jects in the present experiment were still improving at the last session, and

in all cases there was considerable room for further improvement. It is pos-

sible that different learning processes may play important roles in the longer

term. For example, replacement of weak cues and attention to the shape of the

cue-criterion function might be more prominent in later stages of learning.

(d) What is the effect of an initial knowledge base? In the present

task, as in most learning tasks, the subject starts with very little knowledge

of the workings of the system. Natural learning situations provide varying

_ . _- -., ..,, _. -o , . . .. .. . .,, ..t : .I



Learning in a probabilistic environment

amounts of initial knowledge from prior experience and various kinds of social

transmission. How is such information applied in new learning situations?

And what happens in the presence of false, misleading, or outdated initial

information?

These questions, and many others of equal interest, arise from a focus on

the learner's construction of a predictive model, cue by cue. It is proposed

that these constructive processes are central to the ability to learn from

experience in complex probabilistic environments. Certainly, much of what we

know comes from learners of the past. The ability to learn from experience,

though, is critical for understanding and controlling new environments, and

for going beyond what is already known. In studying the construction and

revision of predictive models during learning, then, we are looking into a

critical element in the development of expertise.

- ----------
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FIGURZ CAP'?ICOIS

Figure 1* Ikample of a display screen used in this study. A point is

traced from a starting location (A). The point's behavior is affected by a

gesmtric figure (B) if it comes within a close enough range (indicated by the

circumscribed circle). in that case, it may stop before reachinq the edge of

the screen (C). Uccept for the letters A, B, C, all aspects of the display

were visible to the subject. (Adapted from Mynatt, Doherty, and Tweney, 1978,

with the help of Don N. geinsunts.)

Figure 2. Average total test score per subject (n - 12), by days of

experience. Each wday" consisted of up to one hour of learning trials, and

one-half hour of test trials. Maxii-m possible score is approximately 750.

Figure 3. Changes in constituents of subjects' predictive models

(n - 6), over days of experience. 7he optimal model contained six correct

cues.

L___ _ _ _ _ _ _ _ __ _ _ _ _ _ _ A_ _ _ _ _ __ _ _ _
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